M1.(a) (Gravitational potential energy of falling mass) is converted to linear/translational ke of mass and rotational ke of wheel \checkmark
and internal energy in bearings / air around wheel \checkmark
(b) (Use of $\left.m g h=1 / 2 m v^{2}+1 / 2 l \omega^{2}+T \theta\right)$

$$
m g h=2.94 \mathrm{~J}
$$

$(0.200 \times 9.81 \times 1.50)=\left(0.5 \times 0.200 \times 2.22^{2}\right)+\left(0.5 \times 1 \times 6.73^{2}\right)$
$1 / 2 m v^{2}=0.493 \mathrm{~J}$
$+\left(7.5 \times 10^{-3} \times 4.55\right)$
$T \theta=0.0728 \mathrm{~J}$
E_{ρ} or E_{κ} correct \checkmark
If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible.

All E_{ρ}, E_{κ} and $T \theta$ correct

Leading to $/=2.41(3) / 22.6 \checkmark\left(=0.107 \mathrm{~kg} \mathrm{~m}^{2}\right)$
Gives
$I=0.108 \mathrm{~kg} \mathrm{~m}^{2}$
(c) $\quad \alpha=T / I=7.5 \times 10^{-3} / 0.107=0.0701 \mathrm{rad} \mathrm{s}^{2} \checkmark$
substitution of $\omega_{2}=0, \omega_{1}=6.73$ and α into $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}-2 \alpha \theta$
leading to $\theta=323 \mathrm{rad} \checkmark$

OR

$$
\begin{aligned}
& 1 / 2 l \omega^{2}=T \theta \quad 0.5 \times 0.107 \times 6.73^{2}=7.5 \times 10^{.3} \theta \\
& \theta=323 \mathrm{rad} \quad \\
& \quad \text { Give CE if } \\
& \\
& \quad I=0.108 \mathrm{~kg} \mathrm{~m}^{2} \text { used }
\end{aligned}
$$

> 3.5
> M2.(a) $\overline{(2 \pi \times 0.088)}=6.3 \mathrm{rev}$
> $6.3 \times 2 \pi=39.8 \mathrm{rad}$ or 40 rad
> OR
> 3.5
> $0.088=39.8$ or 40 rad
> If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion
(b) $\quad \omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
(c) (i) $E=1 / 2 l \omega^{2}+1 / 2 m v^{2}+m g h$
$=\left(0.5 \times 7.4 \times 25^{2}\right)$
$+\left(0.5 \times 85 \times 2.2^{2}\right)$
$+(85 \times 9.81 \times 3.5)$
$=2310$ J
$+206$
$+2920$
(= 5440 J or 5400 J)
CE from 1 b
$1 / 2 / \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J}$
$1 / 2 I \omega^{2}+m g h=2310+2920=5230 \mathrm{~J}$
$1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J}$
Each of these is worth 2 marks
(ii) Work done against friction $=T \theta$

$$
=5.2 \times 40=210 \mathrm{~J} \checkmark
$$

Total work done $=W=5400+210$
=5600J $\checkmark 2$ sig fig
CE if used their answer to i rather than 5400J
Accept 5700 J (using 5440 J)
Sig fig mark is an independent mark
(d) Time of travel = distance / average speed $=3.5 / 1.1=3.2 \mathrm{~s}$

5600

$$
\begin{aligned}
& P_{\mathrm{ave}}=3.2=1750 \mathrm{~W} \\
& P_{\max }=P_{\mathrm{ave}} \times 2=3500 \mathrm{~W}
\end{aligned}
$$

OR accelerating torque $=T=W / \theta$
$=5600 / 40=140 \mathrm{~N} \mathrm{~m}$ $\mathrm{P}=T \omega_{\text {max }}=140 \times 25=3500 \mathrm{~W}$

CE from ii
1780 W if 5650 J used

M3.(a) (i) $8.3 \mathrm{rev}=8.3 \times 2 \pi \mathrm{rad} \quad \checkmark(=52 \mathrm{rad})$
Use of $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$ $0=6.4^{2}+2 \times \alpha \times 52$

If eqtn(s) of motion used correctly with $\theta=8.3$ (giving $\alpha=2.5$), give 2 out of first 3 marks.

OR use of $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t$ leading to $t=16.25 \mathrm{~s}$ and $\omega_{2}=\omega_{2}+\alpha t$ $\alpha=(-) 0.39 \checkmark \mathrm{rad} \mathrm{s}^{-2} \checkmark$

Accept: s^{-2}
Unit mark is an independent mark
(ii) $T=1 \alpha$
$=8.2 \times 10^{-3} \times 0.39=3.2 \times 10^{-3} \mathrm{~N} \mathrm{~m}$
Give CE from a i
(b) (i) $(W=T \theta$ or $W=T \omega t)$ where $\theta=0.78 \times 270 \sqrt{ }(=210 \mathrm{rad})$

$$
\begin{gathered}
=3.2 \times 10^{-3} \times 210=0.67 \mathrm{~J} \checkmark \\
\quad \text { Give } C E \text { from a ii }
\end{gathered}
$$

$$
\text { ratio }=\frac{900 \times 270}{0.67} \text { or } \frac{2.4(3) \times 10^{5}}{0.67}
$$

(b) (ii) $=3.6 \times 10^{5}$,

CE from b i. Must be in the form: number $\times 10^{5}$ with number calculated correctly.
900×270 or $2.4(3) \times 10^{5}$ or equivalent must be seen for
$1^{\text {s}}$ mark
1 mark for only writing 3.6×10^{5}

2
(Total 9 marks)

M4. (a) (i) $\quad T=F r=7.0 \times 0.075$
$=0.53(1) \mathrm{N} \mathrm{m}(1)$
(ii) $P=T \omega$
$=0.53 \times 120=64 \mathrm{~W}(1)$

1
(b) use of equation(s) of motion:
$\theta=1 / 2(120+0) \times 6.2=370 \mathrm{rad}(1)$
$370 / 2 \pi=59$ rotations (1)

