M1.(a) (Gravitational potential energy of falling mass) is converted to linear/translational ke of mass and rotational ke of wheel ✓

1

1

1

1

and internal energy in bearings / air around wheel \checkmark

- (b) (Use of $mgh = \frac{1}{2}mv^{2} + \frac{1}{2}lw^{2} + T\theta$) mgh = 2.94 J(0.200 × 9.81 × 1.50) = (0.5 × 0.200 × 2.22²) +(0.5 × 1 × 6.73²) $\frac{1}{2}mv^{2} = 0.493 J$ + (7.5 × 10³ × 4.55) $T\theta = 0.0728 J$ E_{p} or E_{k} correct ✓ If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible. All E_{p} , E_{k} and $T\theta$ correct ✓ Leading to $I = 2.41(3) / 22.6 \checkmark$ (= 0.107 kg m²) Gives I = 0.108 kg m²
- (c) $\alpha = T/I = 7.5 \times 10^{-3} / 0.107 = 0.0701 \text{ rad s}^2 \checkmark$

substitution of $\omega_2 = 0$, $\omega_1 = 6.73$ and α into $\omega_2^2 = \omega_1^2 - 2\alpha\theta$

1

leading to θ = 323 rad ✓ **OR** $\frac{1}{2}l\omega^2 = T\theta$ 0.5 × 0.107 × 6.73² = 7.5 × 10⁻³ θ ✓ θ = 323 rad ✓ *Give CE if I* = 0.108 kg m² used

M2.(a) $\frac{3.5}{(2\pi \times 0.088)} = 6.3 \text{ rev}$

 $6.3 \times 2\pi$ = 39.8 rad or 40 rad \checkmark

OR <u>3.5</u> 0.088= 39.8 or 40 rad ✓ If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion

(b) $\omega = v/r = 2.2/0.088 = 25 \text{ rad s}^{-1} \checkmark$

(c) (i)
$$E = \frac{1}{2}l\omega^2 + \frac{1}{2}mv^2 + mgh$$

 $= (0.5 \times 7.4 \times 25^2)$
 $+ (0.5 \times 85 \times 2.2^2)$
 $+ (85 \times 9.81 \times 3.5)$
 $= 2310 \checkmark$
 $+ 206 \checkmark$
 $+ 2920 \checkmark$
(= 5440 J or 5400 J)
CE from 1b
 $\frac{1}{2}l\omega^2 + \frac{1}{2}mv^2 = 2310 + 210 = 2520 J$
 $\frac{1}{2}l\omega^2 + mgh = 2310 + 2920 = 5230 J$
 $\frac{1}{2}mv^2 + mgh = 210 + 2920 = 3130 J$
Each of these is worth 2 marks

(ii) Work done against friction = $T\theta$

[7]

1

1

= 5.2 × 40 = 210J ✓ Total work done = W = 5400 + 210 = 5600J ✓ 2 sig fig ✓ *CE if used their answer to i rather than 5400J Accept 5700 J (using 5440 J) Sig fig mark is an independent mark*

(d) Time of travel = distance / average speed = $3.5 / 1.1 = 3.2s \checkmark$ $\begin{array}{rcl} & 5600 \\ \hline P_{ave} = & 3.2 & = 1750 \ W \\ \hline P_{max} = P_{ave} \times 2 = 3500 \ W \checkmark \\ \hline \mathbf{OR} \ \text{accelerating torque} = T = W / \theta \\ = 5600 / 40 = 140 \ N \ m \checkmark \\ \hline P = T \ \omega_{max} = 140 \times 25 = 3500 \ W \checkmark \\ \hline CE \ from \ ii \\ 1780 \ W \ if \ 5650 \ J \ used \end{array}$

M3.(a) (i) 8.3 rev = $8.3 \times 2^{\pi}$ rad \checkmark (= 52 rad)

Use of $\omega_{2}^{2} = \omega_{1}^{2} + 2\alpha\theta$

 $0 = 6.4^{2} + 2 \times \alpha \times 52$ If eqtn(s) of motion used correctly with $\theta = 8.3$ (giving $\alpha = 2.5$), give 2 out of first 3 marks.

OR use of $\theta = \frac{1}{2}(\omega_1 + \omega_2)t$ leading to t = 16.25 s and $\omega_2 = \omega_2 + \alpha t$

 $\alpha = (-) 0.39 \checkmark rad s^{-2} \checkmark$

Accept: s⁻² Unit mark is an independent mark

4

3

2

[10]

(ii) $T = l\alpha$ = 8.2 × 10⁻³ × 0.39 = 3.2 × 10⁻³ N m \checkmark *Give CE from a i*

(b) (i)
$$(W = T\theta \text{ or } W = T\omega t)$$
 where $\theta = 0.78 \times 270 \sqrt{(= 210 \text{ rad})}$

= 3.2 × 10⁻³ × 210 = 0.67 J ✓ *Give CE from a ii*

ratio =
$$\frac{900 \times 270}{0.67}$$
 or $\frac{2.4(3) \times 10^5}{0.67}$

(b) (ii) $= 3.6 \times 10^5 \checkmark$ CE from b i. Must be in the form: number $\times 10^{\circ}$ with number calculated correctly.

> 900 × 270 or 2.4(3) × 10^₅ or equivalent must be seen for 1^₅mark 1 mark for <u>only</u> writing 3.6 × 10^₅

> > 2 (Total 9 marks)

2

M4.	(a)	(i) T = Fr = 7.0 × 0.075 = 0.53 (1) N m (1)	2
	(ii)	$P = T\omega$	
		= 0.53 × 120 = 64 W (1)	1

(b) use of equation(s) of motion:

 $\theta = \frac{1}{2}(120 + 0) \times 6.2 = 370 \text{ rad (1)}$

370/2π = 59 rotations **(1)**

[5]